
Breaking of translational symmetry of a traveling planar impulse in a two-dimensional
two-variable reaction-diffusion model

Andrzej L. Kawczyński,* Marcin Leda, and Bartłomiej Legawiec
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland

�Received 10 November 2005; published 24 April 2006�

The stability of a planar impulse in rectangular spatial domains for a two-variable excitable reaction-
diffusion system is numerically studied. The dependence of the stability on the size of the domain perpendicu-
lar to the direction of the propagation of the impulse is shown. The instability results in asymptotic stable
curved impulses or an asymptotic spatiotemporal structure, which is generated similarly to the one-dimensional
backfiring phenomenon.
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I. INTRODUCTION

Each solution to a one-dimensional �1D� reaction-
diffusion system is also the solution to a two-dimensional
�2D� system, if initial conditions depend only on one coor-
dinate. However, the stability of the solution to the 1D
reaction-diffusion system does not imply the stability of this
solution in the 2D system. In one- and two-variable reaction-
diffusion systems with one stable and one unstable stationary
state, 1D �planar or circular� traveling fronts connecting
these states are unstable if the diffusion coefficient for the
reactant is greater than that for the autocatalyst �1–3�. Insta-
bilities of such fronts have been observed in experiments
with iodate—arsenous acid �4� and chlorite-tetrathionate �5�
systems, performed in the conditions for which the autocata-
lysts �iodide and hydrogen ions, respectively� are immobi-
lized. If the autocatalysts are not immobilized, the planar
fronts are stable �4,5�.

Unlike traveling fronts, which can exist in one variable as
well as in multivariable systems, traveling impulses can ap-
pear in at least two-variable reaction-diffusion systems be-
cause the necessary condition of their existence is the excit-
ability. Planar traveling impulses in two-variable excitable
activator-inhibitor systems are stable if the diffusion coeffi-
cients for the activator and the inhibitor are equal or close to
each other. However, if the diffusion coefficient of the inhibi-
tor is sufficiently greater than the diffusion coefficient of the
activator, then the planar or circular impulses in two-variable
systems may be unstable. The instability of the planar and
the circular impulses in 2D systems has been reported by
numerical calculations in a model of an excitable thermo-
chemical system �6�.

In the present paper, the stability of the planar impulse in
a 2D two-variable excitable activator-inhibitor model is con-
sidered in detail. The asymptotic solution for this model has
the form of a traveling impulse and is stable in the 1D sys-
tem for appropriate values of the parameters. We show that
the stability of the planar traveling impulse depends on the
size of the space domain perpendicular to the direction of
propagation of the impulse for the diffusion coefficient of the

inhibitor greater than the diffusion coefficient of the activa-
tor. For narrow space domains, the planar impulse is stable;
but if the size of the domain becomes greater than some
critical value, the planar impulse becomes unstable. Other
asymptotic solutions appear in the 2D system. We show that
two types of stable asymptotic solutions may coexist in semi-
infinite systems for the same vertical system size. One of
them is a single curved traveling impulse and the other is an
infinite series of curved traveling impulses that leaves behind
a stationary periodical structure. In the next section, we
present a model of the reaction-diffusion system. The main
results are presented in the subsequent section, and the con-
clusions are presented in the last section.

II. MODEL

The model describes an open chemical system, in which
two catalytic �enzymatic� reactions occur.
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An excess of the reactant S �activator� inhibits its trans-
formation to the product P �inhibitor�. The inhibitor revers-
ibly reacts with the free catalyst �enzyme� E, as well as with
its complexes SE and S2E, which causes the inhibition of the
transformation of the reactant to the product. We assume that
this inhibition has an allosteric character that allows us to
assume that the rate constants for Reactions �5�–�7� are iden-
tical. These Reactions describe the influence of the product
on the rate of its formation. The other catalytic �enzymatic�
reactions �8� and �9� occur in its saturation regime and there-
fore, its rate is assumed to be constant. The system is open
due to Reaction �1�, in which S0 plays the role of the reser-
voir variable for the reactant S, and Reaction �10�, in which
the product P is irreversibly transformed to inactive reagent
Q. It is noteworthy that the chemical scheme consists only of
elementary, mono-molecular, and bimolecular chemical reac-
tions �excluding autocatalysis�.

We assume that the total concentrations of catalysts �en-
zymes� E and E� are much smaller than the concentrations of
the reactant S and the product P. On the basis of the
Tikhonov theorem �7�, the concentrations of both catalysts
�enzymes� and their complexes may be eliminated as fast
variables, and the dynamics of the system may be described
by the two kinetic equations for the reactant S and the prod-
uct P only.

We consider the initial-boundary value problem for a 2D
system in which Reactions �1�–�10� occur. Its space-time be-
havior in dimensionless variables is described by the follow-
ing equations:
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where x=�k3E0 / �DSKm�x� and y=�k3E0 / �DSKm�y� are di-
mensionless space coordinates, t=k3E0 /Kmt� is dimension-
less time, s=S /Km and p=K5P are dimensionless concentra-
tions of the reactant S and the product P, D=Dp /Ds is
the ratio of the diffusion coefficients for the product Dp
and the reactant Ds, K5=k5 /k−5, Km= �k−2+k3� /k2, and
Km� = �k−6+k7� /k6 are the Michaelis constants. A1

=k1S0 / �k3E0�, A2=k−1Km / �k3E0�, A3=k4 /k−4Km, B=KmK5,
B1=k7E0� / �k3E0�, and B2=k8 / �k3E0K5� are dimensionless pa-
rameters. The assumption that Reactions �8� and �9� occur in
its saturation regime means that Km� is much smaller than p.

Therefore, the rate of this reaction is constant and equal
to B1.

In order to define the problem, we assume the following
initial conditions:

s�x,y,0� = s�x,t0� + delta�x,y�, p�x,y,0� = p�x,t0�

�x,y� � �0,Lx� � �0,Ly� , �12�

where s�x , t0� and p�x , t0� are profiles of the 1D impulses at
t= t0, and the boundary conditions:
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We assume the following values of the parameters:
A1=0.01, A2=0.0001, A3=0.505, B1=7.99�10−3, B2=4.65
�10−5, B=0.3, and D=Dp /Ds=3.9. At these values of the
parameters, System �11� without the diffusion terms has
three stationary states: the stable node, the saddle point, and
the unstable focus �see Fig. 1�.

III. RESULTS

We solve Eqs. �11�–�13� numerically using the Cranck-
Nicholson scheme with the spatial step equal to 2�10−2 for
diffusion terms, and the Runge-Kutta algorithm of the fourth
order with respect to the time step equal to 4.0 for the kinet-
ics terms. The 2D rectangular domain ��x ,y�� �0,Lx�
� �0,Ly�� is considered, but the nontrivial asymptotic behav-
ior of the system can be observed for infinite size in one
dimension that is ��x ,y�� �0, � �� �0,Ly��. The asymptotic
solution to Eqs. �11�–�13� in a 1D infinite system has the
form of a traveling impulse s��� and p��� where �=x−ct and
c is its velocity. In a finite 1D system, the traveling impulse
reflects from the boundaries and spreads periodically from
one wall to the other. An example of the traveling impulse

FIG. 1. The nullclines for the activator �ps� and the inhibitor
�pp�. Arrows schematically show directions of the vector field.
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is shown in Fig. 2. Figure 2�b� shows the solution at time
t=106 for which the traveling impulse is very close to its
asymptotic form. The reflection of the impulse from imper-
meable boundaries was reported in other two-variable 1D
reaction-diffusion models, such as the Gray-Scott model �8�
and the model of an exothermic reaction whose rate constant
obeys Arrhenius formula �9�. It should be stressed that for
B=0.3, the 1D traveling impulse is the structurally stable
asymptotic solution for D� �1.0,4.2�. For values of D�4.2,
the backfiring phenomenon �10,11� is observed.

The planar traveling impulse is the stable asymptotic so-
lution in the 2D system for Ly, smaller than some critical
value Ly,cr�1.4. Perturbations of the system by delta�x ,y� at
one or many grid points decay in time and the perturbed
solution approaches its asymptotic form. However, if Ly

grows above the critical value Ly,cr, the planar traveling im-
pulse loses its stability and the curved traveling impulse be-
comes the stable asymptotic solution. This situation is shown
in Figs. 3�a� and 3�b� for Ly =1.5. Note that in this case, the
system is perturbed only at one grid point. The velocity of

the curved traveling impulse equal to 6.920�10−5 is greater
than the velocity of the planar traveling impulse equal to
4.793�10−5. Moreover, the curved traveling impulse van-
ishes at the wall, whereas the planar traveling impulse re-
flects from the boundaries. The maximum value of the con-
centrations of the reactant is greater than the amplitude of the
1D impulse �compare Figs. 3�a� and 3�b��. Due to the zero-
flux boundary conditions the traveling impulse, which is a
mirror reflection of the impulse shown in Fig. 3�b�, is the
asymptotic solution for Ly =3.0 �see Fig. 3�c��. This solution
is obtained for the perturbation of the system at two grid
points being a mirror reflection of the perturbation for
Ly =1.5. Numerical perturbations of the solution at one, as
well as at many grid points decay in time, and therefore the
curved traveling impulse shown in Fig. 3�c� is stable. The
mirror symmetry conditions allow one to obtain the general
form of the asymptotic solutions for a system with the size
along y being a multiple of Ly =� /2. Such curved traveling
impulses have the following form:

S = S�x − c���t, 	�y + �/2�mod � − �/2	� ,

where � is the spatial period in the y direction and c��� is
the velocity of the impulse which depends on the spatial
period �.

The curved traveling impulse shown in Fig. 3�c� may co-
exist with the solution whose evolution is shown in Fig. 4. In
this case, the planar impulse has been perturbed only at one
grid point. After perturbation, the planar traveling impulse
splits into a curved impulse leaving behind it a small excited
region �see Fig. 4�b��. In further evolution, a curved traveling
impulse spreading in the opposite direction is generated �see
Figs. 4�c� and 4�d��, leaving behind the excited region. This
region splits, producing a pair of next-generation curved
traveling impulses behind which a periodic pattern is gener-
ated �see Figs. 4�e� and 4�f��. The creation of the stationary

FIG. 2. 1D solution to Eqs. �11�–�13� in the form of an impulse
for A1=0.01, A2=0.0001, A3=0.505, B1=7.99�10−3, B2=4.65
�10−5, B=0.3, and D=3.9. The profiles of reagents for t=106 are
shown below.

FIG. 3. Solutions to Eqs. �11�–�13� for delta�x ,y�= 
5 if �x ,y�
= �32.18,1.49� and 0 for all other points� �a ,b� and delta�x ,y�= 
5 if
�x ,y�= �32.18,1.49�, �32.18,1.51� and 0 for all other points� �c� at
t=0 �a� and t=2�106 �b�,�c�.
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periodic pattern is similar to the backfiring phenomenon ob-
served in the 1D systems �10,11� �see Figs. 4�g�–4�l��. In a
finite system, the subsequent curved traveling impulses van-
ish at the boundaries and, finally, the stationary periodic
structure occupies the whole system. In an infinite system, an
infinite series of curved traveling impulses is produced, leav-
ing behind the stationary periodical structure, which is gen-
erated step by step.

We want to stress that if the diffusion coefficient of the
inhibitor is equal or close to the diffusion coefficient of the
activator �D�1�, then the planar traveling impulse is stable
for all values of the size perpendicular to the direction of its
propagation.

IV. CONCLUSIONS

The chemical model consisting of mono- and bimolecular
reactions without autocatalysis is presented. We have shown
that in the 1D reaction-diffusion system, the traveling im-
pulse reflects from the boundary. We have shown that the
planar traveling impulse is stable in the 2D systems with a
small size �Ly� perpendicular to the direction of the propaga-
tion. If Ly exceeds some critical value, then the planar trav-
eling impulse becomes unstable. Two types of stable
asymptotic solutions appear for sufficiently large values of
Ly. One of them is a single curved traveling impulse. The
other one consists of an infinite series of curved traveling

FIG. 4. Solutions to Eqs. �11�–�13� for delta�x ,y�= 
5 at �x ,y�= �32.18,1.49� and 0 on all other points� for t= :0 �a�, 0.67�106 �b�,
0.77�106 �c�, 0.87�106 �d�, 1.07�106 �e�, 1.17�106 �f�, 1.3�106 �g�, 1.47�106 �h�, 1.57�106 �i�, 1.87�106 �j�, 1.94�106 �k�, and
2.41�106 �l�.
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impulses that leaves behind the stationary periodical struc-
ture. The selection of one of these asymptotic solutions de-
pends on the initial conditions.

The instability of planar fronts observed in real chemical
systems was explained as a result of the nonequilibrium
Ising-Bloch bifurcation �12� in which a standing front splits

into two counterpropagating fronts. In our model, the insta-
bility of the traveling impulse seems to be the consequence
of a mechanism similar to the Mullins-Sekerka-Kuramoto or
Sivashinsky instabilities found in investigations of the stabil-
ity of phase interfaces in crystal growing �13,14� and in the
propagation of flames �15�, respectively.
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